ค้นหาบล็อกนี้

วันพุธที่ 20 กุมภาพันธ์ พ.ศ. 2556

ระบบสุริยะ


ระบบสุริยะ      อ้างอิงจากhttp://www.lesa.biz/astronomy/solar-system/origin

ระบบสุริยะประกอบด้วย ดวงอาทิตย์เป็นดาวฤกษ์อยู่ตรงศูนย์กลางของระบบ มีดาวเคราะห์และวัตถุขนาดเล็ก เช่น ดาวเคราะห์แคระ ดาวเคราะห์น้อย ดาวหาง เป็นบริวารโคจรล้อมรอบ ดาวเคราะห์บางดวงมีดวงจันทร์บริวารโคจรล้อมรอบ 

  กำเนิดระบบสุริยะ
ระบบสุริยะเกิดจากกลุ่มฝุ่นและแก๊สในอวกาศซึ่งเรียกว่า“โซลาร์เนบิวลา” (Solar Nebula) รวมตัวกันเมื่อประมาณ4,600ล้านปีมาแล้ว(นักวิทยาศาสตร์คำนวณจากอัตราการหลอมรวมไฮโดรเจนเป็นฮีเลียมภายในดวงอาทิตย์)เมื่อสสารมากขึ้นแรงโน้มถ่วงระหว่างมวลสารมากขึ้นตามไปด้วย กลุ่มฝุ่นและแก๊สยุบตัวหมุนเป็นรูปจานตามหลักอนุรักษ์โมเมนตัมเชิงมุม ดังภาพที่ 1แรงโน้มถ่วงที่เพิ่มขึ้นสร้างแรงกดดันที่ใจกลางจนอุณหภูมิสูงถึง 15 ล้านเคลวิน จุดปฏิกิริยานิวเคลียร์ฟิวชัน หลอมรวมอะตอมของไฮโดรเจนให้เป็นฮีเลียม ดวงอาทิตย์กำเนิดเป็นดาวฤกษ์

ภาพที่1กำเนิดระบบสุริยะ
วัสดุรอบๆ ดวงอาทิตย์ (Planetisimal) ยังคงหมุนวนและโคจรรอบดวงอาทิตย์ด้วยโมเมนตัมที่มีอยู่เดิม มวลสารในวงโคจรแต่ละชั้นรวมตัวกันเป็นดาวเคราะห์ อิทธิพลจากแรงโน้มถ่วงทำให้วัสดุที่อยู่รอบๆ พุ่งเข้าหาดาวเคราะห์จากทุกทิศทาง ถ้าทิศทางของการเคลื่อนที่มีมุมลึกก็จะพุ่งชนดาวเคราะห์ ทำให้ดาวเคราะห์นั้นมีขนาดใหญ่และมีมวลเพิ่มขึ้น แต่ถ้ามุมของการพุ่งชนตื้นเกินไปก็อาจจะทำให้แฉลบเข้าสู่วงโคจร และเกิดการรวมตัวกลายเป็นดวงจันทร์บริวาร ดังจะเห็นว่า ดาวเคราะห์ขนาดใหญ่ เช่น ดาวพฤหัสบดีและดาวเสาร์มีดวงจันทร์บริวารหลายดวง เนื่องจากเป็นดาวเคราะห์ขนาดใหญ่มีมวลมากจึงมีแรงโน้มถ่วงมาก ต่างกับดาวพุธซึ่งเป็นดาวเคราะห์ขนาดเล็กมีมวลน้อยจึงมีแรงโน้มถ่วงน้อยจึงไม่มีดวงจันทร์บริวารเลย ส่วนดาวเคราะห์น้อยและดาวหางนั้นมีรูปทรงเหมือนอุกกาบาต เพราะเป็นดาวขนาดเล็กมีมวลน้อย แรงโน้มถ่วงจึงไม่สามารถเอาชนะแรงยึดเหนี่ยวระหว่างสสารให้ยุบรวมเป็นทรงกลมได้
หลักฐานที่ยืนยันทฤษฏีกำเนิดระบบสุริยะก็คือ ถ้ามองจากด้านบนของระบบสุริยะ (Top view) จะสังเกตได้ว่า ทั้งดวงอาทิตย์ ดาวเคราะห์ และดวงจันทร์บริวารเกือบทุกดวง หมุนรอบตัวเองในทิศทวนเข็มนาฬิกา* และโคจรรอบดวงทิตย์ในทิศทวนเข็มนาฬิกา** และหากมองจากด้านข้างของระบบสุริยะ (Side view) ก็จะสังเกตได้ว่า ดาวเคราะห์และดวงจันทร์บริวารเกือบทุกดวง มีระนาบวงโคจรใกล้เคียงกับระนาบสุริยวิถี (Ecliptic plane) *** ทั้งนี้ก็เนื่องมาจากระบบสุริยะทั้งระบบกำเนิดขึ้นพร้อมๆ กัน จากการยุบรวมและหมุนตัวของจานฝุ่นใน Solar nebula ดังที่กล่าวมา

หมายเหตุ:
* แกนดาวของดาวศุกร์เอียง 178° แกนของดาวยูเรนัสเอียง 98° แกนของดาวพลูโตเอียง 120° จึงมองเห็นเหมือนว่า ดาวทั้งสามหมุนรอบตัวเองในทิศทางที่แตกต่างจากดาวเคราะห์ดวงอื่น ทั้งนี้เป็นเพราะอาจถูกวัตถุขนาดใหญ่ชนขณะที่ระบบสุริยะเริ่มก่อตัว
** ดวงจันทร์ขนาดเล็กบางดวงหมุนรอบตัวเองและโคจรรอบดวงอาทิตย์ โดยมีทิศทางสวนทางกลับดาวเคราะห์ดวงแม่ ทั้งนี้สันนิษฐานว่าเป็นดาวเคราะห์น้อยที่ถูกแรงโน้มถ่วงของดาวเคราะห์จับมาเป็นบริวารในภายหลัง
*** ดวงจันทร์ขนาดเล็กบางดวงโคจรรอบดาวเคราะห์ดวงแม่ โดยมีระนาบเฉียงตัดกับระนาบสุริยวิถี ทั้งนี้สันนิษฐานว่าเป็นดาวเคราะห์น้อยที่ถูกแรงโน้มถ่วงของดาวเคราะห์จับมาเป็นบริวารในภายหลัง

  

องค์ประกอบของระบบสุริยะ

ดวงอาทิตย์(The Sun) เป็นดาวฤกษ์ซึ่งมีมวลร้อยละ 99 ของระบบสุริยะ จึงทำให้อวกาศโค้งเกิดเป็นศูนย์กลางของแรงโน้มถ่วง โดยมีดาวเคราะห์และบริวารทั้งหลายโคจรล้อมรอบ ดวงอาทิตย์มีองค์ประกอบหลักเป็นไฮโดรเจนซึ่งเป็นอยู่ในสถานะพลาสมา (แก๊สที่มีอุณหภูมิสูงมากจนประจุหลุดออกมา)

ภาพที่1 ระบบสุริยะ
ดาวเคราะห์ (Planets) คือบริวารขนาดใหญ่ของดวงอาทิตย์ 8 ดวง เรียงลำดับจากใกล้ไปไกล ได้แก่ ดาวพุธ ดาวศุกร์​ โลก ดาวอังคาร ดาวพฤหัสบดี ดาวเสาร์ ดาวยูเรนัส และดาวเนปจูน ดาวเคราะห์ทั้งแปดโคจรรอบดวงอาทิตย์ โดยมีระนาบใกล้เคียงกับระนาบสุริยวิถี ดาวเคราะห์ชั้นใน 4 ดวงแรก มีองค์ประกอบหลักเป็นของแข็ง ดาวเคราะห์ชั้นนอก 4 ดวงหลังมีองค์ประกอบหลักเป็นแก๊สไฮโดรเจนเช่นเดียวกับดวงอาทิตย์ ดาวเคราะห์เกือบทุกดวงหมุนรอบตัวเองและโคจรรอบดวงอาทิตย์ในทิศทางเดียวกัน (ดูรายละเอียดเพิ่มเติมใน การแบ่งประเภทดาวเคราะห์)
ดวงจันทร์บริวาร (Moons หรือ Satellites) หมายถึง ดาวที่เป็นบริวารโคจรรอบดาวเคราะห์อีกที่หนึ่ง มิได้โคจรรอบดวงอาทิตย์โดยตรง โลกมีบริวารชื่อ ดวงจันทร์ (The Moon) โคจรล้อมรอบ ขณะที่ดาวเคราะห์ดวงอื่นก็มีดวงจันทร์บริวารโคจรล้อมรอบเช่นกัน ยกตัวอย่าง ดาวพฤหัสบดีมีดวงจันทร์ขนาดใหญ่4 ดวง (Galilean moons) ชื่อ ไอโอ (Io),ยูโรปา (Europa),กันนีมีด(Ganymede)และคัลลิสโต(Callisto) ดาวเสาร์มีดวงจันทร์บริวารขนาดใหญ่ชื่อ ไททัน (Titan)
ดาวเคราะห์แคระ(Dwarf Planets) เป็นนิยามใหม่ของสมาพันธ์ดาราศาสตร์สากล(International Astronomical Union) ที่กล่าวถึง วัตถุขนาดเล็กที่มีรูปร่างคล้ายทรงกลม (ภาพที่ 2) ที่มีวงโคจรเป็นรอบดวงอาทิตย์ ซ้อนทับกับดาวเคราะห์ดวงอื่น และไม่อยู่ในระนาบของสุริยวิถี ยกตัวอย่าง ดาวพลูโตถูกจัดเป็นดาวเคราะห์แคระ เนื่องจากมีลักษณะคล้ายทรงกลม มีวงโคจรรอบดวงอาทิตย์ซ้อนทับกับวงโคจรของดาวเนปจูน และเอียงตัดกับระนาบสุริยวิถีเป็นมุม 17° ดาวเคราะห์น้อยซีรีส ถูกจัดเป็นดาวเคราะห์แคระ เนื่องจากมีลักษณะคล้ายทรงกลม มีวงโคจรรอบดวงอาทิตย์ซ้อนทับกับวัตถุอื่นๆ ที่อยู่ในแถบเข็มขัดดาวเคราะห์น้อย (ดูรายละเอียดเพิ่มเติมใน นิยามของดาวเคราะห์)

ภาพที่2ขนาดของดาวเคราะห์แคระเปรียบเทียบกับโลก(ที่มา:NASA, JPL)
ดาวเคราะห์น้อย(Asteroids) คือวัตถุที่ไม่สามารถรวมตัวกันเป็นดาวเคราะห์ได้ เนื่องจากถูกรบกวนจากแรงโน้มถ่วงของดาวเคราะห์ขนาดใหญ่ เช่น ดาวพฤหัสบดี และดาวเสาร์ ทำให้แรงไทดัลที่เกิดขึ้นมีกำลังมากกว่าแรงยึดเหนี่ยวระหว่างสสารภายในดาว ดาวเคราะห์น้อยส่วนใหญ่มีองค์ประกอบหลักเป็นหิน แต่บางดวงมีโลหะปนอยู่ ดาวเคราะห์น้อยส่วนใหญ่อยู่ที่ "แถบดาวเคราะห์น้อย" (Asteroid belt) ซึ่งอยู่ระหว่างวงโคจรของดาวอังคารและดาวพฤหัสบดี ดาวเคราะห์น้อยมีรูปทรงเหมือนอุกกาบาต เนื่องจากมวลน้อยจึงมีแรงโน้มถ่วงน้อยไม่สามารถยุบรวมเนื้อดาวให้มีรูปร่างทรงกลม วงโคจรของดาวเคราะห์น้อยมีความรีมากกว่าวงโคจรของดาวเคราะห์ โดยวงโคจรส่วนใหญ่เอียงทำมุมกับระนาบสุริยวิถีเล็กน้อย ในปัจจุบันได้มีการค้นพบดาวเคราะห์น้อยมากกว่า 3 แสนดวง เนื่องจากดาวเคราะห์น้อยไม่สามารถรวมตัวเป็นดาวเคราะห์ได้ มันจึงไม่มีการเปลี่ยนแปลงโครงสร้างภายในมาหลายพันล้านปีแล้ว นักดาราศาสตร์จึงเปรียบว่า ดาวเคราะห์น้อยเป็นเสมือนฟอสซิลของระบบสุริยะ

ภาพที่3แถบดาวเคราะห์น้อย(ที่มา:Pearson Prentice Hall, Inc)
วัตถุในแถบคอยเปอร์(Kuiper Belt Objects) มีองค์ประกอบหลักเป็นหินปนน้ำแข็ง มีวงโคจรรอบดวงอาทิตย์อยู่ถัดจากดาวเนปจูนออกไป วงโคจรของวััตถุในแถบคอยเปอร์เอียงทำมุมกับระนาบสุริยวิถีเล็กน้อย โดยมีระยะห่างจากดวงอาทิตย์ 40 – 500 AU (AU ย่อมาจาก Astronomical Unit หรือ หน่วยดาราศาสตร์ เท่ากับระยะทางระหว่างโลกถึงดวงอาทิตย์ หรือ 150 ล้านกิโลเมตร) ดาวพลูโตและดาวเคราะห์แคระซึ่งถูกค้นพบใหม่เป็นวัตถุในแถบคอยเปอร์ เช่น เอริส เซดนา วารูนา ปัจจุบันมีการค้นพบวัตถุประเภทนี้แล้วมากกว่า35,000 ดวง

ภาพที่4 แถบไคเปอร์ และวงโคจรของดาวพลูโต (ที่มา:NASA, JPL)
ดาวหาง (Comets) เป็นวัตถุขนาดเล็กเช่นเดียวกับดาวเคราะห์น้อย แต่มีวงโคจรรอบดวงอาทิตย์เป็นวงรีแคบ และทำมุมเอียงตัดกับระนาบของสุริยวิถีเป็นมุมสูง ดาวหางมีองค์ประกอบเป็นน้ำแข็ง (Ice water) และแก๊สในสถานะของแข็ง เมื่อดาวหางเคลื่อนที่เข้าหาดวงอาทิตย์ พลังงานจากดวงอาทิตย์ทำให้มวลของดาวหางระเหิดกลายเป็นแก๊ส ลมสุริยะเป่าให้แก๊สเหล่านี้ให้พุ่งไปในทิศทางตรงข้ามกับดวงอาทิตย์ ปรากฏเป็นหางยาวหลายล้านกิโลเมตร
เมฆออร์ต (Oort Cloud)นักดาราศาสตร์ชาวเนเธอร์แลนด์ชื่อ แจน ออร์ต (Jan Oort) ตั้งทฤษฏีว่า บริเวณขอบนอกของระบบสุริยะเป็นทรงกลม ซึ่งมีขนาดรัศมีประมาณ 50,000 AU จากดวงอาทิตย์ ห่อหุ้มด้วยวัสดุจำพวกน้ำแข็ง ซึ่งหากมีแรงโน้มถ่วงจากภายนอกมากระทบกระเทือน น้ำแข็งเหล่านี้จะหลุดเข้าสู่วงโคจรรอบดวงอาทิตย์ กลายเป็นดาวหางวงโคจรคาบยาว(Long-period comets) ซึ่งมีคาบวงโคจรรอบดวงอาทิตย์นานหลายหมื่นปี เมื่อดาวหางโคจรเข้าใกล้ดวงอาทิตย์ แรงโน้มถ่วงจากดาวเคราะห์จะส่งอิทธิพลให้เปลี่ยนเป็นดาวหางวงโคจรคาบสั้น (Short-period comets) เช่น ดาวหางฮัลเลย์มีวงโคจรรูปวงรีแคบและคาบเกี่ยวกับวงโคจรของดาวยูเรนัส มีคาบการโคจรรอบดวงอาทิตย์เพียง 78 ปี

ภาพที่5ตำแหน่งของแถบคอยเปอร์และเมฆออร์ต (ที่มา:NASA, JPL)
ข้อมูลที่น่ารู้
  • ดาวพุธไม่ใช่ดาวเคราะห์ที่ร้อนที่สุดในระบบสุริยะ เพราะด้านกลางคืนที่หันออกจากดวงอาทิตย์มีอุณหภูมิต่ำมาก อุณภูมิเฉลี่ยจึงไม่สูงมากนัก
  • ดาวศุกร์มีอุณหภูมิพื้นผิวสูงที่สุดในระบบสุริยะ(ร้อนกว่าดาวพุธ)เนื่องจากมีบรรยากาศหนาแน่นเต็มไปด้วยแก๊สคาร์บอนไดออกไซด์ ซึ่งทำให้เกิดภาวะเรือนกระจกอย่างยิ่งยวด (Runaway greenhouse)
  • ดวงจันทร์บริวารขนาดใหญ่ที่โคจรรอบดาวเคราะห์ดวงอื่นๆ ที่ถูกค้นพบแล้ว มีจำนวนไม่น้อยกว่า130 ดวง
  • โฟบอส และ ดีมอส เป็นดาวจันทร์ขนาดเล็กของดาวอังคาร มีรูปร่างเหมือนก้อนหิน สันนิษฐานว่า เป็นดาวเคราะห์น้อยที่ถูกแรงโน้มถ่วงของดาวอังคารดูดจับมาเป็นบริวารในภายหลัง
  • ดาวเคราะห์ขนาดใหญ่เช่น ดาวพฤหัสบดี และดาวเสาร์ มีมวลมากจึงมีแรงโน้มถ่วงมาก จึงดูดจับดาวเคราะห์น้อย ดาวหาง และวัตถุคอยเปอร์ มาเป็นบริวารได้เป็นจำนวนมาก ดวงจันทร์เล็กๆ เหล่านี้มีรูปทรงเหมือนก้อนหิน มีวงโคจรที่รีแคบ และบางดวงเคลื่อนที่สวนทางกับดาวเคราะห์ดวงแม่
  • ดาวเคราะห์ชั้นนอกทุกดวงมีวงแหวน วงแหวนเหล่านี้เกิดจากบริวารของดาวเคราะห์ที่ถูกทำลายโดยแรงไทดัล (ความเครียดภายในของดาวซึ่งเกิดจากแรงโน้มถ่วงจากดาวเคราะห์ดวงแม่)
  • ดาวเคราะห์น้อยบางดวงมีดวงจันทร์บริวารด้วย เช่น ดาวเคราะห์น้อยไอดา(Ida) ขนาด28 x 13กิโลเมตร มีดวงจันทร์แดคทิล (Dactyl) ขนาด1 กม.โดยมีรัศมีวงโคจร100 กิโลเมตร
  • ดาวพลูโตซึ่งถูกจัดเป็นดาวเคราะห์แคระ มีดวงจันทร์บริวารที่ค้นพบแล้ว3 ดวง

การแบ่งประเภทดาวเคราะห์

ในยุคก่อนมียานอวกาศ นักดาราศาสตร์จำแนกประเภทดาวเคราะห์ ตามลักษณะที่ได้จากการสังเกตการณ์ด้วยมุมมองจากโลก โดยใช้วงโคจรของโลกเป็นเกณฑ์ในการแบ่งดาวเคราะห์ออกเป็นดาวเคราะห์วงในและดาวเคราะห์วงนอก
ภาพที่ 1 ดาวเคราะห์วงใน/ดาวเคราะห์วงนอก และมุมมองจากโลก

  • ดาวเคราะห์ช้ันใน (Inferior Planets) หมายถึง ดาวเคราะห์ที่อยู่ใกล้ดวงอาทิตย์มากกว่าโลก ได้แก่ ดาวพุธ และดาวศุกร์ เราจึงมองเห็นเคราะห์จึงมองเห็นดาวเคราะห์วงในอยู่ใกล้ดวงอาทิตย์ เหนือขอบฟ้าด้านทิศตะวันตกเวลาพลบค่ำ หรือเหนือขอบฟ้าด้านทิศตะวันออกเวลารุ่งเช้าเท่านั้น โดยดาวพุธจะห่างจากดวงอาทิตย์ไม่เกิน 28° และดาวศุกร์อยู่ห่างจากดวงอาทิตย์ไม่เกิน 44° (Greatest elongation) ดังภาพที่ 1 เมื่อใช้กล้องโทรทรรศน์ส่องดู ดาวเคราะห์ทั้งสองจะปรากฏให้เห็นเป็นเสี้ยวสว่างซึ่งมีขนาดเปลี่ยนไปในแต่ละคืน ขึ้นอยู่กับระยะห่างจากโลก และแสงเงาจากดวงอาทิตย์ ดังภาพที่ 2

ภาพที่ 3 ขนาดปรากฏของดาวศุกร์
  • ดาวเคราะห์วงนอก (Superior Planets) หมายถึง ดาวเคราะห์ที่อยู่ไกลดวงอาทิตย์มากกว่าโลก ได้แก่ ดาวอังคาร ดาวพฤหัสบดี ดาวเสาร์ ดาวยูเรนัส และดาวเนปจูน ดาวเคราะห์ชั้นนอกสามารถปรากฏให้เห็นตอนกลางคืนในช่วงเวลาใดก็ได้ ไม่จำเป็นต้องอยู่ใกล้ดวงอาทิตย์เวลาขึ้นหรือตก เมื่อส่องดูด้วยกล้องโทรทรรศน์จะเห็นว่า ดาวเคราะห์ชั้นนอกปรากฏให้เห็นเป็นวงค่อนข้างกลมและมีขนาดค่อนข้างคงที่ เนื่องจากอยู่ไกลจากโลกมากว่าดวงอาทิตย์ จึงหันด้านที่สะท้อนแสงอาทิตย์เข้าสู่โลกเสมอ

ในยุคอวกาศ นักดาราศาสตร์จำแนกประเภทดาวเคราะห์ ตามลักษณะทางกายภาพซึ่งได้ข้อมูลมาจากยานอวกาศ ซึ่งแบ่งออกเป็นดาวเคราะห์ชั้นในและดาวเคราะห์ชั้นนอก

ภาพที่ 3 ดาวเคราะห์ชั้นในและดาวเคราะห์ชั้นนอก
  • ดาวเคราะห์ช้ันใน (Inner Planets) หรือ ดาวเคราะห์แข็ง (Terrestrial planets) หมายถึง ดาวเคราะห์ที่มีพื้นผิวเป็นของแข็ง ได้แก่ ดาวพุธ ดาวศุกร์ โลก และดาวอังคาร เป็นดาวเคราะห์ที่มีขนาดเล็กและมีมวลน้อย เนื่องจากบรรยากาศที่ห่อหุ้มดาวถูกทำลายโดยรังสีคลื่นสั้นและอนุภาคพลังงานสูงที่มากับลมสุริยะ จึงเหลือแต่พื้นผิวที่เป็นของแข็ง
ภาพที่ 4 โครงสร้างของดาวเคราะห์ชั้นนอก
  • ดาวเคราะห์ชั้นนอก (Outer Planets) หรือ ดาวเคราะห์แก๊ส (Giant Gas Planets) หมายถึง ดาวเคราะห์ที่มีบรรยากาศหนาแน่น ได้แก่ ดาวพฤหัสบดี ดาวเสาร์ ดาวยูเรนัส และดาวเนปจูน เป็นดาวเคราะห์ทีี่มีขนาดใหญ่และมีมวลมาก เนื่องจากอยู่ห่างไกลจากอิทธิพลของรังสีและลมสุริยะ บรรยากาศจึงสามารถคงอยู่ได้อย่างหนาแน่น ดาวเคราะห์ชั้นนอกมีมวลมากจึงมีแรงโน้มถ่วงสูง ทำให้ดึงดูดสสารทั้งหลายมาสะสมไว้ภายใน และเป็นดวงจันทร์บริวาร สนามแรงโน้มถ่วงความเข้มสูงทำให้เกิดแรงไทดัลบนวัตถุที่เข้ามาใกล้่ แล้วแตกสลายกลายเป็นวงแหวน
หากพิจารณาโครงสร้างภายในของดาวเคราะห์ชั้นนอกในภาพที่ 4 ซึ่งมีองค์ประกอบส่วนใหญ่เป็นแก๊สไฮโดรเจนดังเช่นดวงอาทิตย์​ ดังนั้นหากดาวเคราะห์แก๊สสามารถสะสมมวลให้มากพอที่จะกดดันให้ใจกลางของดาวมีึอุณหภูมิสูงถึง 15 ล้านเคลวิน ก็จะสามารถฟิวชันไฮโดรเจนให้กลายเป็นฮีเลียมเกิดเป็นดาวฤกษ์ และหากนำบรรยากาศที่หนาแน่นด้วยแก๊สไฮโดรเจนนี้ออกไป ดาวเคราะห์ชั้นนอกก็จะมีสภาพเป็นดาวเคราะห์ขนาดเล็กที่มีพื้นผิวเป็นของแข็งดังเช่นดาวเคราะห์ชั้นในนั่นเอง

  

ดวงอาทิตย์

ภาพที่ 1 ดวงอาทิตย์
ดวงอาทิตย์ (The Sun) คือดาวฤกษ์ที่อยู่ตรงศูนย์กลางของระบบสุริยะ มีขนาดเส้นผ่านศูนย์กลาง 1.4 ล้านกิโลเมตร หรือ 109 เท่าของเส้นผ่านศูนย์กลางโลก อยู่ห่างจากโลก 149,600,000 กิโลเมตร หรือ 1 หน่วยดาราศาสตร์ (AU) ดวงอาทิตย์มีมวลมากกว่าโลก 333,000 เท่า แต่มีความหนาแน่นเพียง 0.25 เท่าของโลก เนื่องจากมีองค์ประกอบเป็นไฮโดรเจน 74% ฮีเลียม 25% และธาตุชนิดอื่น 1% (ข้อมูลเพิ่มเติม NASA Sun Fact Sheet)


โครงสร้างภายในของดวงอาทิตย์
  • แก่นปฏิกรณ์นิวเคลียร์ (Fusion core)​ อยู่ที่ใจกลางของดวงงอาทิตย์ถึงระยะ 25% ของรัศมี แรงโน้มถ่วงของดวงอาทิตย์ทำให้มวลสารของดาวกดทับกันจนอุณหภูมิที่ใจกลางสูงถึง 15 ล้านเคลวิน จุดปฏิกิริยานิวเคลียร์ฟิวชันหลอมอะตอมของไฮโดรเจนให้กลายเป็นฮีเลียม และปลดปล่อยพลังงานออกมา
  • โซนการแผ่รังสี (Radiative zone) อยู่ที่ระยะ 25 - 70% ของรัศมี พลังงานที่เกิดขึ้นจากแก่นปฏิกรณ์นิวเคลียร์ถูกนำขึ้นสู่ชั้นบนโดยการแผ่รังสีด้วยอนุภาคโฟตอน
  • โซนการพาความร้อน (Convection zone) อยู่ที่ระยะ 70 - 100% ของรัศมี พลังงานที่เกิดขึ้นไม่สามารถแผ่สู่อวกาศได้โดยตรง เนื่องจากมวลของดวงอาทิตย์เต็มไปด้วยแก๊สไฮโดรเจนซึ่งเคลื่อนที่หมุนวนด้วยกระบวนการพาความร้อน พลังงานจากภายในจึงถูกพาออกสู่พื้นผิวด้วยการหมุนวนของแก๊สร้อนดังภาพที่ 2

ภาพที่ 2 โครงสร้างของดวงอาทิตย์



ปฏิกิริยานิวเคลียร์ฟิวชัน

แรงโน้มถ่วงของดวงอาทิตย์ทำให้มวลสารของดาวกดทับกันที่แก่นกลางของดวงอาทิตย์มีอุณหภูมิสูงถึง 15 ล้านเคลวิน เกิดปฏิกิริยาลูกโซ่โปรตอน - โปรตอน (P-P chain) โดยโปรตอนของไฮโดรเจน 6 ตัว รวมตัวกันเป็นฮีเลียม 1 อะตอม และโปรตอนของไฮโดรเจน 2 ตัว ดังภาพที่ 3


ภาพที่ 3 ปฏิกิริยาแบบลูกโซ่โปรตอน - โปรตอน (P-P chain)
อย่างไรก็ตามในการหลอมรวมอะตอมไฮโดรเจน 6 ตัว (6 mp) ให้เป็นอะตอมของฮีเลียม (1 mHe + 2mp) นั้น มวลสารส่วนหนึ่งได้เปลี่ยนรูปเป็นพลังงาน ตามสมการ E = mc2 ของ อัลเบิร์ต ไอสไตน์ ดังนี้
E = mc2
E = พลังงานซึ่งเปลี่ยนรูปมาจากมวลสาร มีหน่วยเป็นจูล
m = มวลสาร มีหน่วยเป็นกิโลกรัม (kg)
c = ความเร็วแสง = 300,000,000 เมตรต่อวินาที
ปฏิกริยา P-P chain ณ ใจกลางของดวงอาทิตย์ ทำให้โปรตอนของไฮโดรเจน (mp) จำนวน 6 ตัว กลายเป็นนิวเคลียสของฮีเลียม (mHe) จำนวน 1 ตัว และโปรตอนของไฮโดรเจน (mp) จำนวน 2 ตัว อยากทราบว่า มวลสารที่หายไป เปลี่ยนเป็นพลังงานจำนวนเท่าไร
กำหนดให้ 1 mp = 1.675 x 10-27 kg
1 mHe = 6.643 x 10-27 kg

ดังนั้น 6 mp = 6 x (1.675 x 10-27) kg = 10.044 x 10-27 kg ......(1)
1 mHe + 2 mp = (6.643 x 10-27) + 2 x (1.674 x 10-27) kg = 9.991 x 10-2 ......(2)
มวลที่หายไป (1) - (2) = 0.053 x 10-27 กิโลกรัม
พลังงานที่เกิดขึ้นจากมวลที่หายไป
E = mc2
= (0.053 x 10-27 กิโลกรัม)(3 x 108 เมตร/วินาที)2
= 4.77 x 10-12 จูล
ในปัจจุบันดวงอาทิตย์มีกำลังส่องสว่าง 3.9 x 1026 ล้านวัตต์ ทำให้ทราบว่า ทุกๆ 1 วินาที ดวงอาทิตย์เผาไหม้ไฮโดรเจนจำนวน 600,000 ล้านกิโลกรัมให้กลายเป็นฮีเลียม นักวิทยาศาสตร์คำนวณอัตราการเผาไหม้ กับปริมาณไฮโดรเจนและฮีเลียมที่มีอยู่บนดวงอาทิตย์ ทำให้ทราบว่าดวงอาทิตย์มีอายุประมาณ 4,600 ล้านปีมาแล้ว และยังคงเหลือไฮโดรเจนให้เผาไหม้ต่อไปได้อีก 5,000 ล้านปี

โฟโตสเฟียร์
โฟโตสเฟียร์ (Photosphere) คือบรรยากาศชั้นล่างสุดของดวงอาทิตย์ ซึ่งเรามองเห็นเมื่อมองดูจากโลก โฟโตแปลว่า แสง สเฟียร์แปลว่า ทรงกลม ดังนั้น โฟโตสเฟียร์จึงแปลว่า ทรงกลมแสง ใต้ชั้นโฟโตสเฟียร์ลงไปแก๊สร้อนอัดตัวกันแน่น จนแสงไม่สามารถทะลุขึ้นมาได้ แสงอาทิตย์ที่เรามองเห็นมาจากชั้นโฟโตสเฟียร์ ซึ่งมีความหนาเพียง 400 กิโลเมตร มีอุณหภูมิประมาณ 5,800 เคลวิน โฟโตสเฟียร์ประกอบด้วย "แกรนูล" (Granule) ซึ่งเป็นเซลล์ของแก๊สร้อนหมุนวนด้วยการพาความร้อน (Convection cell) จากเบื้องล่างขึ้นมาเมื่อเย็นแล้วตัวจมลงดังภาพที่ 4 แกรนูลแต่ละเซลล์มีขนาดประมาณ 1,000 กิโลเมตร มีอายุนานประมาณ 15 นาที ถ้าสังเกตดวงอาทิตย์ด้วยกล้องโทรทรรศน์ติดตั้งแผ่นกรองแสง จะสังเกตเห็นว่า ผิวของดวงอาทิตย์ประกอบด้วยเซลล์เล็กๆ จำนวนมากคล้ายกับผิวของลูกบาสเกตบอล



ภาพที่ 4 จุดดวงอาทิตย์ แกรนูล บนชั้นโฟโตสเฟียร์

พื้นผิวของโฟโตสเฟียร์มีจุดสีคล้ำเรียกว่า "จุดดวงอาทิตย์" (Sunspots) ซึ่งมีขนาดและจำนวนเปลี่ยนแปลงไปในแต่ละวัน จุดขนาดใหญ่อาจปรากฏให้เห็นนานหลายวัน แต่จุดเล็กๆ อาจมีอายุเพียงวันเดียว จุดเหล่านี้มีขนาดประมาณโลกของเราหรือใหญ่กว่า จุดดวงอาทิตย์ไม่ได้มืดสนิทแต่มีความสว่างประมาณ 10 เท่าของดวงจันทร์เต็มดวง และมีอุณหภูมิต่ำกว่าพื้่นผิวทั่วไปบนโฟโตสเฟียร์ประมาณ 1,000 เคลวิน

ภาพที่ 5 การเบี่ยงเบนของสนามแม่เหล็กบนดวงอาทิตย์

จุดดวงอาทิตย์เกิดจากการที่สนามแม่เหล็กของดวงอาทิตย์เบี่ยงเบน เนื่องจากดวงอาทิตย์มีสถานะเป็นแก๊ส แต่ละส่วนของดวงอาทิตย์หมุนรอบตัวเองด้วยความเร็วไม่เท่ากัน (Differential rotation) กล่าวคือ ในการหมุนหนึ่งรอบ บริเวณเส้นศูนย์สูตรจะใช้เวลา 25 วัน ในขณะที่บริเวณขั้วทั้งสองใช้เวลานานถึง 36 วัน ความแตกต่างเช่นนี้มีผลทำให้สนามแม่เหล็กเบี่ยงเบน ในบริเวณที่สนามแม่เหล็กมีกำลังสูง เส้นแรงแม่เหล็กจะกักอนุภาคแก๊สร้อนที่พุ่งขึ้นมาไว้ไม่ให้ออกนอกเขตของเส้นแรง เมื่อแก๊สร้อนเย็นตัวลงก็จะจมลงที่ตำแหน่งเดิมทำให้เรามองเห็นเป็นสีคล้ำ เพราะบริเวณนั้นมีอุณหภูมิต่ำกว่าพื้นที่ส่วนใหญ่ของดวงอาทิตย์ จุดดวงอาทิตย์มักปรากฏให้เห็นในบริเวณละติจูดที่ 30 องศาเหนือและใต้ และมักปรากฏให้เห็นเป็นคู่เช่นเดียวกับขั้วแม่เหล็ก จุดดวงอาทิตย์มีปรากฏให้เห็นมากเป็นวัฏจักร (Solar cycle) ทุกๆ 11 ปี ดังที่แสดงในกราฟในภาพที่ 6
ภาพที่ 6 กราฟแสดงวัฎจักรการเกิดจุดดวงอาทิตย์

โครโมสเฟียร์
โครโมสเฟียร์ (Chromosphere) เป็นบรรยากาศชั้นกลางของดวงอาทิตย์ โคโมสเฟียร์แปลว่า ทรงกลมสี เราสามารถมองเห็นเป็นพวยแก๊สสีแดงตามขอบของดวงอาทิตย์ ขณะที่เกิดสุริยุปราคาเต็มดวง หรือมองดูด้วยกล้องโทรทรรศน์ติดตั้งแผ่นกรองแสงไฮโดรเจน - อัลฟา โครโมสเฟียร์มีความหนาประมาณ 2,000 กิโลเมตร และมีอุณหภูมิเกือบ 25,000 เคลวิน โดยปกติเรามองไม่เห็นโครโมสเฟียร์เนื่องจากโฟโตสเฟียร์ซึ่งเป็นบรรยากาศชั้นล่างมีความสว่างกว่ามาก

ภาพที่ 7 พวยแก๊สบนชั้นโครโมสเฟียร์

พวยแก๊ส และการลุกจ้า
พื้นผิวของดวงอาทิตย์เต็มไปด้วยแก๊สร้อนซึ่งประทุอยู่ตลอดเวลา เมื่อแก๊สร้อนบนดวงอาทิตย์พุ่งตัวสูงเหนือชั้นโครโมสเฟียร์ขึ้นมาหลายหมื่นกิโลเมตร "พวยแก๊ส" (Prominences) จะเคลื่อนที่เข้าสู่อวกาศด้วยความเร็ว 1,000 กิโลเมตร/วินาที หรือ 3.6 ล้านกิโลเมตรต่อชั่วโมง ในบางครั้งมีการระเบิดใหญ่กว่าเรียกว่า การลุกจ้า (Solar flare) ทำให้เกิดกลุ่มอนุภาคพลังงานสูงเรียกว่า "พายุสุริยะ" (Storm) ซึ่งสามารถสร้างความเสียหายให้แก่ดาวเทียมและยานอวกาศ เมื่อพายุสุริยะปะทะกับพื้นผิวโลกอาจทำให้ไฟฟ้าลัดวงจรหรือระบบคมนาคมขัดข้องได้


คอโรนา
คอโรนา (Corona) เป็นบรรยากาศชั้นบนสุด สามารถมองเห็นได้เป็นวงแสงสีขาว เมื่อเกิดสุริยุปราคาเต็มดวงเท่านั้นดังภาพที่ 8 คอโรนามีรูปทรงตามสนามแม่เหล็กของดวงอาทิตย์ คอโรนามีความเบาบางมากแต่มีอุณหภูมิสูงถึง 2 ล้านเคลวิน อะตอมจึงเคลื่อนที่ด้วยความเร็วสูงมาก อย่างไรก็ตามบริเวณคอโรนาไม่มีความร้อนสูงเนื่องจากมีแก๊สอยู่เบาบางมาก ในบางครั้งดวงอาทิตย์มี "การปล่อยก้อนมวลจากคอโรนา" (Colona Mass Ejection เขียนย่อว่า CME) สู่อวกาศ ซึ่งถ้าอนุภาคประจุของ CME มีความหนาแน่นและเดินทางมาสู่โลกก็จัดเป็นพายุสุริยะเช่นกัน


ภาพที่ 8 คอโรนา

ลมสุริยะ
ดวงอาทิตย์เป็นก้อนแก๊สซึ่งมีอุณหภูมิสูงจนอะตอมของไฮโดรเจนสูญเสียอิเล็กตรอนกลายเป็นประจุทุกๆ วินาที เราเรียกสถานะนี้ว่า "พลาสมา" (Plasma) ดวงอาทิตย์ปลดปล่อยมวลสู่อวกาศในรูปของลมสุริยะ (Solar Wind) ลมสุริยะไม่ใช่กระแสลมในบรรยากาศ แต่เป็นกระแสอนุภาคพลังงานสูงซึ่งเกิดจากแก๊สร้อนของดวงอาทิตย์สูญเสียประจุสู่ห้วงอวกาศในรูปของโปรตอน อิเล็กตรอน และอนุภาคอื่นๆ ซึ่งเคลื่อนที่ด้วยความเร็วประมาณ 450 กิโลเมตร/วินาที โดยจะใช้เวลาในการเดินทางถึงโลกประมาณ 4 วัน ในขณะที่รังสีจากดวงอาทิตย์ใช้เวลาเดินทางถึงโลกเพียง 8 นาทีครึ่ง โดยปกติลมสุริยะไม่มีความรุนแรงมากนัก แต่ในบางครั้งที่ดวงอาทิตย์มีการลุกจ้า (Solar Flare) หรือการปล่อยก้อนมวลจากคอโรนา (CME) ออกมาจำนวนมากจนกลายเป็นพายุสุริยะ (Solar storm) อนุภาคเหล่านี้อาจสร้างความเสียหายแก่ดาวเทียม ยานอวกาศ ระบบสื่อสารโทรคมนาคมและระบบไฟฟ้า รวมทั้งทำลายโครงสร้าง DNA ของสิ่งมีชีวิต ดังนั้นนักวิทยาศาสตร์จึงส่งยานอวกาศ SOHO ขึ้นไปเฝ้าสังเกตการเปลี่ยนแปลของดวงอาทิตย์ เพื่อการแจ้งเตือนและพยากรณ์สภาพอวกาศ (Space weather)


ภาพที่ 9 สนามแม่เหล็กโลก

เมื่ออนุภาคพลังงานสูงในลมสุริยะมีความเร็วเหนือเสียงปะทะกับสนามแม่เหล็กโลก (Magnetosphere) จะเกิดช็อคเวฟและลดความเร็วลง ประจุไฟฟ้าเคลื่อนที่ไปตามเส้นแรงแม่เหล็กซึ่งล้อมรอบโลก อนุภาคบางส่วนถูกกักไว้ในเส้นแรงแม่เหล็กใน "แถบแฟนอัลเลน" (Van Allen belts) ซึ่งมีสองชั้นอยู่สูงเหนือพื้นผิวโลกประมาณ 2,000 – 5,000 กิโลเมตร และ 13,000 – 19,000 กิโลเมตร ดังภาพที่ 9 แถบแฟนอัลเล็นชั้นในเต็มไปด้วยอนุภาคโปรตอนพลังงานสูง ส่วนแถบชั้นนอกเป็นอนุภาคโปรตอนและอิเล็กตรอนพลังงานต่ำ ลมสุริยะมีคุณสมบัติเป็นตัวนำไฟฟ้าที่ดีเยี่ยม เมื่อมันเคลื่อนที่ผ่านสนามแม่เหล็กโลก อนุภาคโปรตอนและอิเล็กตรอนความเร็วสูงพุ่งชนบรรยากาศชั้นบนของโลก เมื่ออะตอมของแก๊สในชั้นบรรยากาศได้ดูดกลืนพลังงานเหล่านี้ก็จะแผ่รังสีออกมามองเห็นเป็นแสงสว่างเรียกว่า "แสงเหนือแสงใต้" (Aurora) ในบริเวณรอบขั้วแม่เหล็กโลกดังภาพที่ 10


ภาพที่ 10 แสงเหนือ บริเวณใกล้ขั้วโลกเหนือ


ดาวเคราะห์

ระบบสุริยะ มีดาวเคราะห์เป็นบริวารโคจรรอบดวงอาทิตย์ 8 ดวง ดาวเคราะห์ชั้นใน 4 ดวงแรก มีขนาดเล็กและมีพื้นผิวเป็นของแข็ง เนื่องจากอยู่ใกล้ดวงอาทิตย์มาก บรรยากาศจึงถูกทำลาย ดาวเคราะห์ชั้นนอก 4 ดวงถัดไป เป็นดาวแก๊สขนาดใหญ่ เนื่องจากอยู่ห่างไกลจากดวงอาทิตย์ บรรยากาศจึงไม่ถูกทำลาย ดาวมีมวลมากทำให้แรงโน้มถ่วงมากตามไปด้วย จึงมีวงแหวนและดวงจันทร์บริวารหลายดวง

ดาวพุธ

ดาวพุธ (Mercury) เป็นดาวเคราะห์ซึ่งอยู่ใกล้กับดวงอาทิตย์มากที่สุด เป็นดาวเคราะห์ขนาดเล็ก และไม่มีดวงจันทร์เป็นบริวาร โครงสร้างภายในของดาวพุธประกอบไปด้วยแกนเหล็กขนาดใหญ่มีรัศมีประมาณ 1,800 ถึง 1,900 กิโลเมตร ล้อมรอบด้วยชั้นที่เป็นซิลิเกต (ในทำนองเดียวกับที่แกนของโลกถูกห่อหุ้มด้วยแมนเทิลและเปลือก)ซึ่งหนาเพียง 500 ถึง 600 กิโลเมตร บางส่วนของแกนอาจจะยังหลอมละลายอยู่
ในปี พ.ศ.2517 สหรัฐอเมริกาได้ส่งยานมารีเนอร์ 10 ไปสำรวจและทำแผนที่พื้นผิวดาวพุธเป็นครั้งแรก แต่เนื่องจากดาวพุธอยู่ใกล้ดวงอาทิตย์มาก จึงสามารถทำแผนที่ได้เพียงร้อยละ45ของพื้นที่ทั้งหมด พื้นผิวดาวพุธเต็มไปด้วยหลุมบ่อมากมายคล้ายกับพื้นผิวดวงจันทร์ มีเทือกเขาสูงใหญ่และแอ่งที่ราบขนาดใหญ่อยู่ทั่วไป แอ่งที่ราบแคลอริสมีขนาดเส้นผ่านศูนย์กลางประมาณ1,300กิโลเมตร นักดาราศาสตร์สันนิษฐานว่า แอ่งที่ราบขนาดใหญ่เช่นนี้เกิดจากการพุ่งชนของอุกกาบาตในยุคเริ่มแรกของระบบสุริยะ
ดาวพุธไม่มีชั้นบรรยากาศห่อหุ้ม ดาวพุธอยู่ใกล้ดวงอาทิตย์มาก กลางวันจึงมีอุณหภูมิสูงถึง 430 °C แต่กลางคืนอุณหภูมิลดเหลือเพียง -180°C อุณหภูมิกลางวันกลางคืนแตกต่างกันถึง 610°C



คำอธิบายภาพ
1. ภาพถ่ายดาวพุธจากยานเมสเซนเจอร์
2. แอ่งที่ราบแคลอริส
3. การแผ่กระจายของรอยแยกที่ใจกลางแอ่งแคลอริส
4. เครเตอร์สองชั้นที่แอ่งเรดิทแลดิ
5. บริเวณขั้วใต้

ข้อมูลสำคัญ​
ระยะทางเฉลี่ยจากดวงอาทิตย์ 57.91 ล้านกิโลเมตร
คาบวงโคจร 87.97 วัน
ความรีของวงโคจร 0.206
ระนาบวงโคจรทำมุมกับระนาบสุริยวิถี 7°
แกนเอียง 0°
หมุนรอบตัวเองใช้เวลา 58.65 วัน
รัศมีของดาว 2,440 กิโลเมตร
มวล 0.055 ของโลก
ความหนาแน่น 0.98 ของโลก
แรงโน้มถ่วง 0.38 ของโลก
องค์ประกอบของบรรยากาศที่เบาบางมาก ไฮโดรเจน, ฮีเลียม, โซเเดียม, โปแตสเซียม, แคลเซียม, แมกนีเซียม
อุณหภูมิ -180°C ถึง 430°C
ไม่มีดวงจันทร์​
ไม่มีวงแหวน

ที่มาของข้อมูลและภาพ NASA's Solar System Lithograph Set


ดาวศุกร์

ดาวศุกร์ (Venus) อยู่ห่างจากดวงอาทิตย์เป็นลำดับที่ 2 เป็นดาวเคราะห์ที่มีขนาดใหญ่เป็นอันดับที่ 6 ไม่มีดวงจันทร์บริวาร ดาวศุกร์มีลักษณะที่คล้ายคลึงกับโลก จนได้ชื่อว่าเป็นดาวเคราะห์ฝาแฝดกับโลกของเรา โครงสร้างภายในของดาวศุกร์ ประกอบด้วย แกนกลางที่เป็นเหล็กมีรัศมีประมาณ 3,000 กิโลเมตร ห่อหุ้มด้วยชั้นแมนเทิลที่มีความหนาประมาณ 3,000 กิโลเมตร และเปลือกแข็งที่ประกอบด้วยหินซิลิเกต
ยานอวกาศลำแรกที่เดินทางไปดาวศุกร์คือ มาริเนอร์ 2 ในปี..2505หลังจากนั้นก็มีอีกหลายลำ จนกระทั่งในปี พ..2532 ยานอวกาศแมกเจลแลนได้ใช้เรดาร์ในการสำรวจผ่านชั้นบรรยากาศที่หนาแน่นของดาวศุกร์เพื่อทำแผนที่พื้นผิวของดาว การสำรวจโดยใช้สัญญาณเรดาร์ทำให้ทราบระดับสูงของพื้นผิวดาวศุกร์ และพบว่าพื้นผิวดาวศุกร์ปกคลุมไปด้วยภูเขาไฟใหญ่และที่ราบที่เกิดจากการระเบิดของภูเขาไฟหลายแห่ง นอกจากนี้ยังพบว่า พื้นผิวดาวศุกร์ไม่มีหลุมอุกกาบาตขนาดเล็ก เนื่องจากว่า อุกกาบาตจะถูกเผาไหม้ไปจนหมดในระหว่างที่ตกเข้าสู่ชั้นบรรยากาศที่หนาแน่นของดาวศุกร์
ชั้นบรรยากาศของดาวศุกร์นั้นมีความหนาแน่นมาก ความกดอากาศบนพื้นผิวดาวศุกร์สูงกว่าความกดอากาศบนพื้นผิวโลก 90 เท่า หรือมีค่าเท่ากับความดันที่ใต้ทะเลลึก1 กิโลเมตร บรรยากาศของดาวศุกร์ประกอบไปด้วยแก๊สคาร์บอนไดออกไซด์เป็นส่วนใหญ่ และมีชั้นเมฆอยู่หลายชั้นที่ประกอบไปด้วยแก๊สซัลเฟอร์ไดออกไซด์(กรดกำมะถัน)ซึ่งมีความหนาหลายกิโลเมตร ทำให้เราไม่สามารถมองเห็นพื้นผิวดาวศุกร์ ชั้นบรรยากาศที่หนาทึบทำให้เกิดสภาวะเรือนกระจกกักเก็บความร้อนไว้ ทำให้อุณหภูมิพื้นผิวสูงถึง 470°C จะเห็นได้ว่าพื้นผิวดาวศุกร์ร้อนกว่าพื้นผิวดาวพุธมาก ทั้งๆ ที่อยู่ไกลจากดวงอาทิตย์กว่าดาวพุธถึงสองเท่าก็ตาม


คำอธิบายภาพ
1. ภาพถ่ายอินฟราเรดของดาวศุกร์ โดยยานไอโอเนียร์ 10 เมื่อปี พ.ศ.2522
2. ภาพจากเรดาร์ทำให้เห็นระดับสูงของพื้นผิวที่แตกต่างกัน
3. หลุมที่เกิดจากอุกกาบาตพุ่งชน
4. ภูเขาไฟ Maat Mons
5. ซ้ายมือเป็นภาพเมฆชั้นบนในช่วงรังสี UV, ขวามือเป็นภาพเมฆชั้นล่างในช่วงรังสีอินฟราเรด
6. ดาวศุกร์เคลื่อนที่ผ่านหน้าดวงอาทิตย์

ข้อมูลสำคัญ​
ระยะทางเฉลี่ยจากดวงอาทิตย์ 108.21 ล้านกิโลเมตร
คาบวงโคจร 224.70 วัน
ความรีของวงโคจร 0.0068
ระนาบวงโคจรทำมุมกับระนาบสุริยวิถี 3.39°
แกนเอียง 177.3°
หมุนรอบตัวเองใช้เวลา 243.02 วัน (หมุนย้อนทางกับดาวเคราะห์ดวงอื่น)
รัศมีของดาว 6,052 กิโลเมตร
มวล 0.815 ของโลก
ความหนาแน่น 0.95 ของโลก
แรงโน้มถ่วง 0.91 ของโลก
องค์ประกอบหลักของบรรยากาศ คาร์บอนไดออกไซด์
อุณหภูมิพื้นผิว 470°C
ไม่มีดวงจันทร์​ ไม่มีวงแหวน

ที่มาของข้อมูลและภาพ NASA's Solar System Lithograph Set


โลก

โลก (The Earth) เป็นดาวเคราะห์ดวงเดียวในระบบสุริยะที่มีสภาวะแวดล้อมเอื้ออำนวยต่อการดำรงชีวิตของสิ่งมีชีวิต โลกอยู่ห่างจากดวงอาทิตย์เป็นลำดับที่ 3 และมีขนาดใหญ่เป็นอันดับที่ 5 โลกมีสัณฐานเป็นทรงกลมแป้นมีรัศมีเฉลี่ย 6,371 กิโลเมตร ครงสร้างภายในของโลกประกอบไปด้วยแก่นชั้นในที่เป็นเหล็ก มีรัศมีประมาณ 1,200กิโลเมตร ห่อหุ้มด้วยแก่นชั้นนอกที่เป็นของเหลว (Liquid) ประกอบด้วยเหล็กและนิเกิล มีความหนาประมาณ 2,200กิโลเมตร ถัดขึ้นมาเป็นชั้นแมนเทิลซึ่งเป็นของแข็งเนื้ออ่อนที่ยืดหยุ่นได้ (Plastic) ประกอบไปด้วย เหล็ก แมกนีเซียม ซิลิกอน และธาตุอื่นๆ มีความหนาประมาณ 3,000กิโลเมตร เปลือกโลกเป็นของแข็ง (Solid) มีองค์ประกอบส่วนใหญ่เป็นเฟลด์สปาร์ และควอตช์ (ซิลิกอนไดออกไซด์)
บรรยากาศของโลกประกอบด้วยไนโตรเจน77 % ออกซิเจน21%ที่เหลือเป็นอาร์กอน คาร์บอนไดออกไซด์ และน้ำ คาร์บอนไดออกไซด์ช่วยในการกักเก็บความร้อนไว้ภายใต้ชั้นบรรยากาศโดยอาศัยภาวะเรือนกระจกทำให้โลกมีความอบอุ่น ไม่หนาวเย็นจนเกินไปสำหรับสิ่งมีชีวิต อย่างไรก็ตามถ้าปริมาณคาร์บอนไดออกไซด์เพิ่มขึ้นมากขึ้นก็จะทำให้เกิดสภาวะโลกร้อน ซึ่งอาจส่งผลให้สิ่งมีชีวิตไม่สามารถดำรงอยู่ได้
นอกจากนี้โลกยังมีสนามแม่เหล็กซึ่งเกิดจากการเคลื่อนที่ของแก่นชั้นนอกซึ่งเป็นเหล็กเหลว ถึงแม้ว่าสนามแม่เหล็กโลกจะมีความเข้มไม่มาก แต่ก็ช่วยปกป้องไม่ให้อนุภาคที่มีพลังงานสูงจากดวงอาทิตย์ (Solar wind) เดินทางผ่านมาที่ผิวโลกได้ โดยสนามแม่เหล็กจะกักให้อนุภาคเดินทางไปตามเส้นแรงแม่เหล็ก และเข้าสู่ชั้นบรรยากาศได้เพียงที่ขั้วโลกเหนือและขั้วโลกใต้เท่านั้น เมื่ออนุภาคพลังงานสูงปะทะกับโมเลกุลของแก๊สในชั้นบรรยากาศ ทำให้เกิดแสงสีสวยงาม สังเกตเห็นบนท้องฟ้ายามค่ำคืน เรียกว่า "แสงเหนือแสงใต้" (Aurora)


คำอธิบายภาพ
1. ภาพถ่ายโลกจากดาวเทียมหลายดวงมาต่อกัน
2. ธารน้ำแข็งในทวีปแอนตาร์กติก
3. รูโอโซนที่ขั้วโลกใต้ (สีน้ำเงิน)
4. ชีวมณฑลซึ่งประกอบด้วยพืชพรรณ (สีเขียว) และแพลงตอนพืช (สีน้ำเงินเข้ม)
5. ระดับน้ำทะเลเมื่อเกิดสภาวะลานีญา (สีน้ำเงินม่วง แสดงระดับน้ำทะเลต่ำกว่าปกติ)
6. ความแตกต่างของสนามแรงโน้มถ่วงโลก (สีแดง มีความแรงมาก)

ข้อมูลสำคัญ​
ระยะทางเฉลี่ยจากดวงอาทิตย์ 149.60 ล้านกิโลเมตร
คาบวงโคจร 365.26 วัน
ความรีของวงโคจร 0.0167
ระนาบวงโคจรทำมุมกับระนาบสุริยวิถี 0.00005°
แกนเอียง 23.45°
หมุนรอบตัวเองใช้เวลา 23.93 ชั่วโมง
รัศมีของโลก 6,378 กิโลเมตร
มวล 5.97 x 1024 กิโลกรัม
ความหนาแน่น 5.515 กรัม/ลูกบาศก์เซนติเมตร
แรงโน้มถ่วง 9.8 เมตร/วินาที
องค์ประกอบหลักของบรรยากาศ ไนโตรเจน ออกซิเจน
อุณหภูมิพื้นผิว -88°C ถึง 58°C
มีดวงจันทร์ 1 ดวง​ ไม่มีวงแหวน

ที่มาของข้อมูลและภาพ NASA's Solar System Lithograph Set
 

ไม่มีความคิดเห็น:

แสดงความคิดเห็น